GOSTARIA DE BAIXAR TODAS AS LISTAS DO PROJETO MEDICINA DE UMA VEZ?

CLIQUE AQUI

ACESSE

WWW.PROJETOMEDICINA.COM.BR/PRODUTOS

RESUMO TEÓRICO - ARITMÉTICA

Conjuntos numéricos

 $\begin{array}{ll} \text{Números naturais} & \mathbb{N} = \{0, 1, 2, 3, ...\} \\ \text{Números inteiros} & \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\} \\ \text{Números racionais} & \mathbb{Q} = \left\{\frac{a}{b}; a \in \mathbb{Z}, b \in \mathbb{Z} - \{0\}\right\} \\ \text{Números irracionais} & \mathbb{Q}' = \text{dízimas não-periódicas} \end{array}$

Números reais $\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}'$

Observação

Números decimais finitos e dízimas periódicas podem ser escritos no formato de fração.

Observação

São formas equivalentes

$$\frac{-2}{3} = \frac{2}{-3} = -\frac{2}{3}$$

Definição

O inverso aditivo (simétrico ou oposto) de $a \in \mathbb{R}$ é $x \in \mathbb{R}$ tal que

$$a + x = 0$$

ou seja – a.

Definição

O inverso multiplicativo (recíproco) de $a\in\mathbb{R}-\{0\}$ é $\mathbf{x}\in\mathbb{R}$ tal que

$$ax = 1$$

ou seja, $\frac{1}{a}$.

Observação

$$\frac{0}{3} = 0$$
 $\frac{3}{0}$ não existe $\frac{0}{0}$ é indeterminação

Definição

 $a \in \mathbb{N}$ é múltiplo de $b \in \mathbb{Z}$ se existe $c \in \mathbb{Z}$ tal que a = bc

Nesse caso dizemos que b é divisor de a.

Proposição (Critérios de divisibilidade)

	Condição
2	Número par
3	Soma dos algarismos é múltiplo de 3
4	Dois últimos algarismos formam um múltiplo de 4
5	Algarismo das unidades é 0 ou 5.
6	Divisível simultaneamente por 2 e 3.
8	Três últimos algarismos formam um múltiplo de 8
9	Soma dos algarismos é múltiplo de 9
10	Algarismo das unidades é 0

Definição

Um natural a > 1 é primo se seus únicos divisores são 1 e a. Caso contrário, é dito composto.

Observação

0 e 1 não são primos nem compostos.

Teorema

Se $a \in \mathbb{Z}$ não possui divisores primos $p \le \sqrt{a}$ então a é primo.

Exemplo

Para descobrir se $a \le 100$ é primo, basta verificar se 2, 3, 5 e 7 são seus divisores.

Exemplos

São primos 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Teorema Fundamental da Aritmética

Todo natural a > 1 tem uma decomposição em fatores primos

$$a = p_1^{j_1} \dots p_n^{j_n}$$

Proposição

Dadas as decomposições em fatores primos de a e b, mdc(a,b) é formado pelos fatores primos comuns de a e b em seus menores expoentes.

Definição

Dizemos que os inteiros a e b são primos entre si se mdc(a,b) = 1.

Proposição

Dadas as decomposições em fatores primos de a e b, mmc(a,b) é formado pelos fatores primos comuns e não comuns de a e b em seus maiores expoentes.

Proposição

Sejam a e b inteiros positivos. Então mdc(a, b).mmc(a, b) = ab

Proposição

O número de divisores de $a = p_1^{j_1} \dots p_n^{j_n}$ é $(j_1 + 1) \dots (j_n + 1)$.

